
SMC-TR-97-16 AEROSPACE REPORT NO.
TR-96(8617)-1

Computer Systems Division
Software System Metrics Approach
Revision 1

September 1996

Prepared by

S. K. HOTING AND R. J. COSTELLO
Computer Systems Division
Engineering and Technology Group

Prepared for

SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE MATERIEL COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

DUO QuAI
4

Engineering and Technology Group

Approved for public release; distribution is unlimited

THE AEROSPACE
CORPORATION

El Segundo, California 19970812 022

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under

Contract No. F04701-93-C-0094 with the Space and Missile Systems Center, P. O. Box 92960,

Los Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace Corporation by

W. K. Clarkson, General Manager. The project officer is Colonel Charles E. Whited.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National

Technical Information Service (NTIS). At NTIS, it will be available to the general public,

including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report

does not constitute Air Force approval of the report's findings or conclusions. It is published only

for the exchange and stimulation of ideas.

Charles E. Whited, Colonel, USAF

Project Officer

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources, gathenng and maintaining the
data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information^ndudrig suggestions for reducing
this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. ^^
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1996

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Computer Systems Division Software System Metrics Approach, Revision 1

5. AUTHOR(S)

S. K. Hoting and R. J. Costello

7. PErTOHMING OHÜANIZAI ION NAME(iS) AND ADDHE55(bü)

The Aerospace Corporation
2350 E. El Segundo Blvd.
El Segundo, CA 90245-4691

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Space and Missile Systems Center
Air Force Materiel Command
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

5. FUNDING NUMBERS

F04701-93-C-0094

8. PERFORMING OHÜANIZAI ION
REPORT NUMBER

TR-96(8617)-1

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

SMC-TR-97-16

11. SUPPLEMENTARY NOTES

This Technical Report is a revision of Aerospace Technical Report TR-94(4904)-3, Space and Missile Systems
Center Report SMC-TR-94-43.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Over the decades, the increasing use of software has enabled construction and deployment of ever more capable
space systems for SMC. However, managing, controlling, and participating in software development for such
software-intensive systems is a difficult and error-prone task that is exacerbated by the lack of meaningful data on
key products and processes. Such data should provide visibility into the health and status of the evolving software
system, assist in early identification of current and potential problem areas, and aid in predicting such software
system characteristics as reliability, maintainability, cost, and schedule. Until recently, comprehensive data collection
and analysis methods which treat software as an integral part of a larger system have not been available. This report
introduces a software system metrics approach that has been developed for this purpose. The report discusses the
utility of the approach, key concepts for applying metrics to software-intensive systems, and basic metrics planning
guidelines. It also introduces a set of recommended metrics that cover both the system and the software throughout
the life cycle. A complete description of the approach, associated contractual guidelines, and detailed descriptions
of several metrics are contained in Aerospace TOR-96(8617)-l, Metrics for Software-Intensive Mission Critical
Computer Resource (MCCR) Systems.

14. SUBJECT TERMS

Acquisition Software
Contract Software Engineering
Metrics Software Lifccycle

Software Metrics
Software Process
Systems Engineering

System Life Cycle
System Metrics
Systems Engineering Process

15. NUMBER OF PAGES

13

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-1 £
298-102

Contents

Preface to Revision 1 2

1. Introduction 4

2. Metrics Within Large Systems: Three Key Concepts 5

3. Metrics Planning: Basic Guidelines 6

3.1 Primitive and Aggregate Measures 6

3.2 Metric Descriptions 6

3.3 Metrics Collection/Reporting Tools 6

3.4 Contractor Metrics Plans 7

3.5 Metrics for Many Disciplines 7

4. Recommended Metrics 8

Tables

1. Recommended Metrics for the Software Measurement Program 9

2. Recommended Metrics for the System Measurement Program 10

3. Product/Process Metrics 1 1

4. Project Resource Metrics 12

5. Progress Metrics 12

Honng/Costello/

Preface to Revision 1

This Technical Report (TR) is a revised version of Aerospace Report No. TR-94(4904)-3.

There are three main reasons this revision is being published. These are: (1) the increasing

importance of metrics to our work in supporting the acquisition of large, software-intensive systems;

(2) the continuing evolution of the metrics discipline; and (3) changes we have made to the

recommended metrics sets to reflect this evolution and to reflect work we have done since the original

version was published.

As space systems become more and more software intensive, it becomes increasingly

important to be able to measure software system cost, schedule, development progress, and quality.

At Aerospace, we are frequently asked to provide assistance both in developing and assessing

contractors' metrics programs and in analyzing the metric data collected. We have few experts in this

area, and to increase the effectiveness and timeliness with which we can respond to these requests, we

need materials we can use as a foundation to guide all programs. Two products we have developed to

this end include this TR and its newly published companion Technical Operating Report, Aerospace

Report No. TOR-96(8617)-l, Metrics for Software-Intensive Mission Critical Computer Resource

(MCCR) Systems. While the TR provides an overview of the recommended metrics approach, the

TOR is the first extensive work that combines in-depth information on an approach, detailed metrics

definitions, and planning and contractual guidance in using software and system metrics. The

detailed definition for each metric addresses its purpose; the raw data to be collected; all calculations

to be performed on the raw data; and collection, reporting, and interpretation/analysis procedures.

Contractual guidance is included in the TOR in the form of tasking text and tailoring for software

and systems engineering planning documents and reporting documentation.

Software and system metrics have also become more critical in the current acquisition reform

environment. Acquisition reform dictates that we develop truly effective means to obtain insight into

development effort health and status without the more labor-intensive oversight into the product that

we have used in the past. In fact, current acquisition regulations encourage the use of software

metrics.1 However, little guidance is available on how to implement their use on major programs. By

providing an approach and detailed information on the use of system and software metrics, this TR

For example. DoD Regulation 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and

Major Automated Information System (MAIS) Acquisition Programs, 15 March 1996, states that it is DoD policy to use

software metrics "... to effect the necessary discipline of the software development process and assess the maturity of the

software product."

Hoiing/Costello/

and the above-referenced TOR can assist program offices in adopting acquisition reform without

losing all insight into the systems for which they are responsible.

Revisions to this TR were also made necessary by the evolution of the metrics discipline and

its application to software engineering. Still a very young field in comparison with other branches of

engineering, software engineering has seen many methods and practices applied in an attempt to

solve its problems, and it is not clear that any one way of building large software systems will be

suitable in all cases. Hence, a viable discipline for measuring software products, processes,

development resources, and development progress will find it necessary to adapt itself to the specific

system and development effort it is measuring. Fortunately, there are many basic but critical

measures that can be applied to most systems, with some modifications in the details of collection and

reporting. Some examples include requirements volatility, defect density/inspection effectiveness, and

problem report metrics. Both the TR and the TOR focus on these kinds of metrics. We have made

some modifications to the recommended sets of metrics for systems and software since the original

version was published (see Tables 1 through 5), and these are reflected herein.

Hoting/Costello/

1. Introduction

For today's large, software-intensive systems, the length of the development cycle and the

number and complexity of technical and organizational interfaces create a great deal of uncertainty

and risk. Additionally, for many of these systems, the Government's acquisition philosophy dictates

that minimal standards and contractor controls be included in the contract, which results in the

Government having little insight into the quality of the developing software-intensive product. It is,

therefore, necessary to be able to objectively evaluate these systems during their development to

determine whether or not they will meet requirements, schedule, and budget; to assist risk

management; and to facilitate corrective and preventive action. Software system metrics can provide

objective information necessary for technical and managerial insight into, control of, and

improvement of the development effort.

Over the last few years, Computer Systems Division personnel have developed a metrics

approach that has been designed for use during the development of large software-intensive systems.

This approach includes an integrated set of system-level and software-level metrics recommended for

collection by the development contractor(s) and detailed descriptions of each of these metrics. In

creating this set of recommended metrics and their descriptions, the results of other current metrics

technology efforts were incorporated, as appropriate. The metrics approach also includes suggested

tailorings to selected contractual documentation to ensure that needed metrics information will be

collected and reported to the Government. The metrics approach, recommended contractual

documentation guidelines, and detailed descriptions of several of the recommended metrics are

currently available in Aerospace Report No. TOR-96(8617)-l, Metrics for Software-Intensive Mission

Critical Computer Resource (MCCR) Systems.

Holing/Costello/

2. Metrics Within Large Systems: Three Key Concepts

Three basic concepts recommended for the development of large software-intensive systems

include seamlessness, consistency, and defined expectations. These concepts apply to many aspects of

development, such as supportability and reliability, as well as to metrics. The seamlessness concept

recognizes that most of our software systems will be developed by a prime and several subcontractors.

Seamlessness means that products developed by the various contractors should be uniform to the

extent possible in order to increase the efficiency of communication among the contractors and

between contractors and the Government, to reduce interface complexity, and to enhance

maintainability and traceability. For similar software, uniform methods and types of tools and

uniform training in these methods and tools are recommended. Thus, in accordance with the concept

of seamlessness, all contractors should collect and report the same metrics information so that a

uniform set of metrics information is reported to the program office.

The consistency concept recognizes that the total software process is an integral part of the

overall systems engineering process and must be dealt with as such throughout the entire life cycle

and across all systems engineering disciplines. The systems engineering process has a system-level

component to the process, which then flows down to hardware- and software-level subprocesses.

Consistency among these levels is necessary. For a large system, metrics should be collected on

several levels: system, segment, and lower levels. Within the lower levels, there are hardware-specific

and software-specific components. The software-level metrics program has been created to be

consistent with and provide information to the higher level measurements. The higher level process

will detail the methods by which lower level measures are incorporated into higher level measures.

Software-level metrics are defined to be those that deal with software-only components; integrated

hardware/software components are handled by higher level measurements.

The metrics approach includes effective, early communication of Government technical

expectations to the contractor(s) before Engineering and Manufacturing Development (EMD) so that

the contractor(s) can create appropriate plans to meet these expectations. It is recommended that this

be done by: delivering Government expectations documents to the Demonstration/Validation

(Dem/Val) or Pre-EMD contractors before they begin developing their EMD planning

documentation; participating in Government-contractor Integrated Product Teams (IPTs); and

providing feedback on early versions of developing planning documentation. One purpose of the

TOR referenced in Section 1 is to provide a basis for conveying such metrics expectations to the

contractor.

Hoting/Coslello/

3. Metrics Planning: Basic Guidelines

3.1 Primitive and Aggregate Measures
The purpose of the metrics program is twofold: to gain visibility into the overall health and

status of the evolving system and to identify, at the earliest possible point in the life cycle, specific

problem areas or potential future problems. Both detailed and aggregate measures are necessary and

need to be reported to the Government on a regular basis (often monthly). To assess overall health

and status, cumulative measures should generally be used, whereas for the identification and

resolution of problems, metrics should be reported at a detailed level. Detailed, or primitive,

information should be reported (or made available) in electronic form for analysis and retention by

the program office.

3.2 Metric Descriptions
Emphasis is placed on the need for careful definition and description of each metric and its

report formats. Without specific definitions of precisely what is being measured, the measurement

will have little meaning or use. It is, for example, insufficient to report source lines of code (SLOC),

without discussing how that code is being counted. A definition that excludes data declarations and

comments and counts only executable SLOC may easily result in a metric value that is half that

resulting from a definition that includes data declarations and comments. Additionally, without

relatively consistent descriptions of a given metric that is used on several different programs, it will

not be possible to adequately evaluate the usefulness of reported metric data.

3.3 Metrics Collection/Reporting Tools
It is expected that whenever possible, the collection of metrics data will be automated and will

use tools that have been integrated into the contractor's software engineering environment. In

general, it is preferable to use commercial tools when they are available. However, for some metrics it

may be necessary to use contractor-developed tools, either because there are no commercial tools that

calculate the defined metric or because the contractor tool already supports some aspect of the

existing development process and that aspect is being measured. For example, if the contractor has

an existing automated problem report tracking tool, then accumulating metrics on problem reports

may be done most efficiently by modifying the existing tool to collect the defined metric. On a

given development effort, the same metrics tools should be used by all development contractors, and

to the extent possible, all tools and methods should be compatible and integrated among all levels of

the software system.

Hoting/Costello/

3.4 Contractor Metrics Plans
The contractor's process planning documentation (systems level and software level) should

include a detailed and unambiguous definition of each metric and its report formats, or should

reference Government-provided definitions and report formats that the contractor intends to use.

The plans should also include descriptions of methods/tools used to collect, analyze, and report metric

information, as well as a description of management's use of the collected metric information to assess

and improve the software system product and the processes used to generate the product.

3.5 Metrics for Many Disciplines
For software, the metrics program is designed to share information with many software

disciplines (e.g., risk management, Software Quality Assurance, testing, management, and problem

reporting). The contractor's software planning document should discuss the various software

organizations/activities that use metric data. The use of metric information to assess software risk, to

assess and improve software processes, to manage the technical effort, and to identify error-prone

software units should, for example, be explained.

Hoting/Costello/

4. Recommended Metrics

The activities of selecting and defining a set of metrics that effectively covers the software

process can only reach closure in the context of the specific development processes to be used.

However, it is possible to list a general set of software metrics which covers the main activities and

phases of the software life cycle. This set can be tailored and specific metric definitions can be

developed to suit a specific software life cycle and process.

Table 1 shows an example set of metrics that covers the software life cycle. Three categories

of metrics have been identified: progress, resource, and product/process. A collection of metrics

from each of these categories is usually required for comprehensive coverage. Progress metrics

indicate an organization's adherence to schedule. Resource metrics indicate the amount of

development, integration, test, and/or support resources and personnel available and the amount in

use. Product/process metrics are used to measure attributes of the documentation (electronic and/or

paper) and code and characteristics of the activities, methods, practices and transformations employed

in developing the products. Product and process measurement activities tend to overlap, which is why

they are combined into one category. For example, a high number of product defects can imply the

existence of a problem in the process used to create the product. Also, a dearth of exposed defects

can indicate the existence of a superior product or a deficient inspection process.

While it is necessary to have a software metric set that spans the software life cycle and is

tailored to the process, this is not sufficient for a software effort that will be integrated into a larger

system. Thus, we also recommend use of a set of progress and product/process metrics at the system

level that is integrated and consistent with the software-level metric set, and these metrics are listed in

Table 2. Summary descriptions of each type of metric listed in Tables 1 and 2 appear in Tables 3

through 5. Complete descriptions for several of the metrics are provided in Aerospace Report No.

TOR-96(8617)-l, Metrics for Software-Intensive Mission Critical Computer Resource (MCCR)

Systems.

Hoting/Costello/

Table 1. Recommended Metrics for the Software Measurement Program

PRODUCT AND PROCESS PRODUCT AND PROCESS (continued)

Volatility Complexity (desian and code)

-Requirements* -Logic Structure*

-Design and Code -Information Row*

-Build Content -Database Structure

Traceability -Coupling
-Cohesion -Between Requirements*

-Between Requirements and Design
-Between Requirements and Test PROGRESS

Problem Reports/Action Items/Issues ComDleteness

(all products/processes) -Requirements Specification Completeness*

-Source of Error (Product) -Design

-Type of Error -Design Document Completeness

-Finding Activity -CSC/CSU Design Completeness

-Severity of Error (Impact) -Code

-Criticality of Error (Priority) --CSC/CSU Code Completeness

^ge -Test Document

-Status (Open-Unresolved/Open-Resolved/ Closed) -Test Plan Completeness

-Reason for Closure -Test Description Completeness

Defect Density/lnsDection* -Formal Qualification Test (FCT) Dry Run/

Rehearsal Completeness
-Test Event

-CSU Unit Test Completeness
-CSC Integration Test Completeness

-Requirements Defect Density
-Design and Code Defect Density
-inspection Coverage and Effectiveness

Faylt PensitYfTeSt* -CSCI Integration Test Completeness
-Requirements Fault Density -Build (Software Integration) Test
-Design and Code Fault Density Completeness
-Test Coverage and Effectiveness -FQT Completeness

Interface Consistencv Integrated Progress
-Requirements -Requirements
-Design and Code -Design

Target Resource Utilization -Code

-CPU -Test Document

-RAM -Test Event
-DISK
-I/O Channel

§ize (for CSCI, CSC, and CSU) PROJECT RESOURCE
-Requirements (Specification Language

Elements/Lines, Number of Requirements, etc.) Staffing

-Design (Specification Language Elements/Lines) -Actual Vs. Planned Level/Turnover Rate

-Code (Source Language)* -Major Software Function

-High-Order. Assembly, and Special Purpose -CSCI
Languages -Skill Level

-Operating System Command Languages Resource Utilization
-Data Base Definition Languages -Development/lntegratiorvTest Resources
-User Interface Construction Languages -CPU
-Expert System Rules -RAM

-Mass Storage (on-line/off-line)
-I/O Channel
-Workstation

♦Definition exists in Aerospace Report No. TOR-96(8617)-l, Metrics for Software-Intensive Mission

Critical Computer Resource (MCCR) Systems.

Honng/Cosicllo/

Table 2. Recommended Metrics for the System Measurement Program

PRODUCT AND PROCESS PROGRESS

Volatility Completeness
-Requirements Specification Completeness* -Requirements*

-System/Segment -System/Segment

-Integrated Configuration Item (Cl) -Integrated Cl

-Hardware Cl -Hardware Cl

-Design -Design

-System/Segment -System/Segment Design Document Completeness

-Integrated Configuration Item (Cl) -Design Completeness

-Hardware Cl •System/Segment
•Integrated Cl

Traceability •Hardware Cl
-Integration and Test -Between Requirements*

-System to Segment -Test Document Completeness

-Segment to Cl
-Higher Level Cl to Lower Level Cl

-Rehearsal Completeness
-Test Event Completeness

-Between Requirements and Design •System/Segment

-System/Segment
-Integrated Cl

•Integrated Cl
•Hardware Cl

-Hardware Cl
-Between Requirements and Test Integrated Progress

-System/Segment -Requirements

-Integrated Cl -Design

--Hardware Cl -Implementation
-Integration and Test

Problem Reports/Action Items/Issues

(all products/processes)
-Source of Error/Product
-Type of Error
-Finding Activity
-Severity of Error (Impact)
—Criticality of Error (Priority)

^Age
-Status (Open-Unresolved/Open-Resolved/Closed)

-Reason for Closure

Defect Densitv/lnsDection*

-Requirements Defect Density
-Inspection Coverage and Effectiveness

Fault Densitv/Test*

-Requirements Fault Density
-Test Coverage and Effectiveness

Interface Consistency

-System to External System Requirements
-System to External System Design

♦Definition exists in Aerospace Report No. TOR-96(8617)-l, Metrics for Software-Intensive Mission

Critical Computer Resource (MCCR) Systems.

10

Holing/Costello/

Table 3: Product/Process Metrics

METRIC SUMMARY DESCRIPTION: OVERVIEW AND PURPOSE
Volatility Indicate changes in products/processes and reasons for change. Provide insight into system maturity and

stability. Aid in predicting future changes to products/processes which are affected by current changes in
products/processes. Essential in interpreting other metrics, e.g., progress, traceability, and completeness
metrics. Recommended for requirements, design, code, and incremental build definitions.

Traceability Indicate degree to which development organization maintains accountability for meeting requirements at each
life-cycle stage via a comprehensive requirements allocation and mapping process. Measure relationships
between requirements for a given product at a given level and: requirements at other specification levels;
designs; code/databases; builds; and tests. Also measure relationships between designs for a given product
and: code/databases; builds; and tests. Provide quantitative means for determining whether all required
relationships/dependencies are addressed. Assist in exposing incompletely specified, insufficiently analyzed,
overly specified, and complex areas of system. Essential in interpreting other metrics, e.g. completeness
metrics.

Target Resource
Utilization

Indicate planned and actual utilization of computer resources for target system. Provide timely feedback on
whether software is being designed and developed to fit resources planned for its operational use. Assist in
preventing adverse effects on cost, schedule, and quality due to inadequate system sizing. Recommended for
CPU, primary memory, mass storage, I/O capacity, and other applicable resources.

Problem Report/ Action
Item/Issue

Indicate quality of products, and processes used to create them; and effectiveness of engineering process in
documenting and addressing problems, actions, and issues. Consist of counts of problem reports and action
items characterized by source, product, problem type/category, age, severity, criticality, status, and primary
reason for closure. Recommended for all products generated from requirements through testing and
maintenance activities. Essential in interpreting other metrics.

Size Indicate magnitude of development and maintenance effort Used in assessing progress, estimating
remaining cost and schedule, identifying technical problems, predicting maintenance cost and effort,
generating historical data for future use, and quantifying the amount of reuse. Recommended for
requirements, designs, and code.

For code, size must include all code that tie programmer writes in any language: compiled/assembled
languages, operating system command languages, database definition languages, graphical user interface
builders, and expert system shells. (SLOC is the recommended measurement for several of these
languages.) Classified by: physical & logical statements, statement type, deliverable & non-deliverable
statements, operational & support statements; and new, modified, & reused statements.

Complexity indicate structural characteristics of software system logic flow, information flow, and databases. Also
indicate modularity of software. Useful in determining whether work has been completed satisfactorily, in
planning for code development and test, in identifying technical problems, and in estimating development, test
and maintenance cost and effort Several studies have shown that highly complex software is more likely to
contain errors and is more difficult to maintain than less complex software.

Defect Density/
Inspection Effectiveness/
Inspection Coverage

Indicate density2 of product defects that are detected during an inspection or walkthrough. Classified by type,
criticality, and source. Provide early insight into quality, assist in cost/schedule estimation, indicate
effectiveness of inspection/walkthrough process, and indicate the coverage provided in inspections (i.e., the
amount of product covered in inspections). Recommended for requirements, designs, and code. Useful in
predicting product/process volatility. Essential in interpreting other metrics, e.g., completeness, traceability,
and volatility metrics.

Fault Density/
Test Effectiveness/
Test Coverage

Indicate density2 of product faults that are detected during test execution or post-test analysis. Classified by
type, criticality, and source. Assist in determining effectiveness of software process and quality of its
products. Indicate test effectiveness and the coverage provided by tests (i.e., the amount of product covered in
tests). Recommended for requirements, designs, and code. Useful in predicting product/process volatility.
Essential in interpreting other metrics, e.g., completeness, traceability, test coverage, and volatility metrics.
Provide data on product quality and compliance with requirements.

Interface Consistency Indicate consistency and completeness of interface information at each level of specification.

Density is the number of defects/faults found divided by the size of the product in which the defect/fault is detected.

11

Hoting/Costello/

Table 4: Project Resource Metrics

METRIC
Staffing

Development, Integration,
and Test Resource
Utilization

SUMMARY DESCRIPTION: OVERVIEW AND PURPOSE

Characterize number, discipline (e.g., design, coding, test, configuration management, quality assurance),
skill level (discipline and years of education and experience), and area(s) of assignment (e.g., CSCIs) for
development organization personnel. Indicate planned and unplanned changes in staffing level and
assignments, which can be used to predict whether an effort is adequately staffed to preclude adverse effects
on cost, schedule, and quality.

Indicate planned and actual utilization of computer resources for software development and support activities.
Provide timely feedback on whether planned and available resources for each phase will adequately support
the activities of that phase. Assist in preventing adverse effects on cost schedule, and productivity due to
resource shortages. Recommended for CPU, primary memory, mass storage, I/O capacity, workstations,
and other applicable resources such as COTS software.

Table 5: Progress Metrics

METRIC
Completeness

Integrated Progress

SUMMARY DESCRIPTION: OVERVIEW AND PURPOSE
Indicate work accomplished versus work remaining in requirements and design specification, coding,
inspection, unit test, integration and test and system test Assist in estimating cost and schedule remaining,
in identifying technical problem areas, and in determining readiness to proceed to the next phase. Each class
of completeness indicator (where a class focuses on a single product e.g., requirements, design, code, or
test) should be used in conjunction with the other measures for that class as indicated in the 'Integrated
Progress" metric description below.

Indicate overall progress in requirements, design, code, and test. Encompass measures of completeness,
volatility, traceability, defect and fault density, problem reports/action items, and test coverage as appropriate
for phase and product under consideration.

12

Hoting/Costello/

References

Costello, Rita J. and Sharon K. Hoting, et al. 1996. Metrics for Software-Intensive Mission Critical
Computer Resource (MCCR) Systems. El Segundo, California: The Aerospace Corporation.
Aerospace Technical Operating Report TOR-96(8617)-l.

Hoting, Sharon K. and Rita J. Costello. 1994. Computer Systems Division Software System Metrics
Approach. El Segundo, California: The Aerospace Corporation. Aerospace Technical Report
TR-94(4904)-3.

U.S. Department of Defense. 1996. Mandatory Procedures for Major Defense Acquisition Programs
(MDAPs) and Major Automated Information System (MAIS) Acquisition Programs. Washington,
D.C.: Office of the Secretary of Defense. Department of Defense Regulation 5000.2-R.

13

Hoting/Coslello/

ITHE AEROSPACE
(CORPORATION

2350 E. El Segundo Boulevard
El Segundo, California 90245-4691

U.S.A.

